WSZ-1.5地埋式生活污水处理设备

产品编号:28457165 修改时间:2024-04-27 14:47 发布IP:59.63.206.211 访问统计:1次
所属公司: 潍坊鲁盛水处理设备有限公司 更多产品
公司主营: 一体化污水处理设备、生活污水处理设备、...
联系人: 逄政委
联系电话: 13070717631
13070717631
在线咨询:  
品牌: 鲁盛
型号: WSZ
价格: 面议
起订: 1 台
供货总量: 100 台
发货期限: 自买家付款之日起 3 天内发货
产地: 潍坊污水处理成套设备
发货地址: 东风西街1004号
 
 
推荐产品
 
WSZ-1.5地埋式生活污水处理设备的详细介绍 相关文档: PDF DOC TXT
WSZ-1.5地埋式生活污水处理设备
鲁盛环保主产:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、加药装置。
我们的产品可用于:生活污水、医疗污水、屠宰污水、养殖污水及类似的生产污水。
产品有市单位检测报告、合格证及其他的认证证书,保证我们的产品都是正品,都是经得住时间考验的产品。
实力方面:公司有3个生产车间,每天可出货5台以上,二氧化氯发生器1个生产车间,每天可出货30台以上。
服务方面:公司在外安装售后技术人员50人,遍布全国各地,一有问题,一个电话,我们马上行动。

pH值
    不同的微生物有不同的pH值适应范围。例如细菌、放线菌、藻类和原生动物的pH值适应范围是在4~10之间。大多数细菌适宜中性和偏碱性(pH值6.5~7.5)环境;氧化硫化杆菌喜欢在酸性环境,它的适pH值为3,亦可以在pH值1.5的环境中生活;酵母菌和霉菌要求在酸性或偏酸性的环境中生活,适pH值3.0~6.0,适应pH值范围为1.5~10之间。 废水生物处理过程保持适pH值范围是十分重要的。如用活性污泥法处理废水,曝气池混合液的pH值达到9.0时,原生动物将由活跃转为呆滞,菌胶团粘性物质解体,活性污泥结构遭到破坏,处理效率显著下降。如果进水pH值突然降低,曝气池混合液呈酸性,活性污泥结构也会变化,二沉池中出现大量浮泥现象。
    培养优良、驯化成熟的生物系统具有较强的耐冲击负荷的能力,但如果pH值在大幅度内变化,则会影响反应器的效率,甚至对微生物造成毒性而使反应器失效,因为pH值的改变可能引起细胞电荷的变化,进而影响微生物对营养物质的吸收和微生物代谢中酶的活性。
    综上所述,在生物系统处理废水过程中,应提供微生物佳的pH值范围,以使其在优化条件下运行。
    化学需氧量(COD)。COD的测试方法严格遵守废水水质分析国家标准测试方法。化学需氧量是用化学氧化剂氧化水中的有机污染物时所消耗的氧化剂量,用氧量(mg/L)表示。化学需氧量越高,也表示水中有机污染物越多。常用的氧化剂主要是重铬酸钾和高锰酸钾。以高锰酸钾作氧化剂时,测得的值称CODMn或简称OC。以重铬酸钾作氧化剂时,测得的值称COD?Cr,或简称COD。如果废水中有机物的组成相对稳定,则化学需氧量和生化需氧量之间有一点个比例关系。一般说,重铬酸钾化学需氧量与阶段生化需氧量之差,可以粗略的表示为不能被需氧微生物分解的有机物。
psb (70)_副本
经过充分的生化处理后,水中所含的绝大部分可生化降解的有机物已经被去除,在这种条件下,即使COD浓度较高,采取适当的措施后可以避免将其作为循环系统的补充水而产生微生物大量繁殖的问题。第二,投加臭氧后,难降解或不可生化降解的有机物得到一定程度的分解,转化为可生物降解的有机物,使得污水的可生化性提高。如果不进行进一步的生化处理,必将在循环冷却系统中引起微生物的大量繁殖,因此将投加臭氧作为后置的去除COD措施是不合理的。即使再经过生化处理,这部分可生化降解的有机物可以得到大部分去除,出水中的COD也相应的降低,但臭氧处理后的生化装置出水的BOD则不一定降低,根据前面的分析,将其作为循环系统补充水补到循环冷却系统后,微生物的繁殖程度不一定降低。第三,采用臭氧处理的基建成本和运行费用都很高,理论上去除1mg/L的COD需要3mg/L的臭氧,而根据相关试验,氧化1mg/L氨氮17——20mg/L臭氧,考虑到将有机物部分氧化时投加的臭氧数量可以减少,但要达到理想的效果臭氧投加浓度应远远高于微污染给水处理,基建投资和运行费用都将很高。
  综合对比,采用生化处理进一步降解污水中的COD是经济的处理工艺,其缺点是处理后出水的COD浓度难于达到很低的水平,当要求的COD值很低时,仍需要采取其它措施;活性炭吸附工艺是一项技术可靠、经济上可行的方法,出水的COD可达到10mg/L左右的水平,缺点是需要定期再生,如附近有活性炭生产厂提供换炭业务时,活性炭吸附工艺是一种较理想的污水深度处理方法;对于臭氧预处理+生化处理方法,虽然能够使出水COD达到较低的水平,但作为循环冷却系统补充水不一定能够减少粘垢的产生量,同时采用臭氧处理还会大大增加基建投资和运行费用,运转管理也将复杂化,因此在实际工程中应慎重考虑。
温度
    温度对生化培养过程起着至关重要的作用。目前,尽管本项目废水处理工程尚未做到对生化系统控制温度的程度,但是各生化反应系统、各运行阶段中温度的测量和分析依旧对生化污泥驯化培养过程起到指导性作用,它能够为生化培养过程中各现象的解释提供依据,有助于帮助管理及操作人员对系统运行管理做出正确及时的判断。 温度在很大程度上影响活性污泥(包括厌氧、兼氧和好氧)中的微生物活性程度,并且对诸如溶解氧、曝气量等产生影响,同时对生化反应速率产生影响。不同种类的微生物所生长的温度范围不同,约为5℃~80℃。在此温度范围内,可分成低生长温度、高生长温度和适生长温度。以微生物适应的温度范围,微生物可分为中温性、好热性和好冷性三类。中温微生物的生长温度范围在20℃~45℃,好冷性微生物的生长温度在20℃以下,好热性微生物的生长温度在45℃以上。 废水生化好氧生物处理,以中温细菌为主,其生长繁殖的适温度为20℃~37℃。当温度超过高生物生长温度时,会使微生物的蛋白质迅速变性及酶系统遭到破坏而失去活性,严重者可使微生物死亡。低温会使微生物的代谢活力降低,进而处于生长繁殖停止状态,但仍保存其生命力。 厌氧生物处理中的中温性甲烷菌适温度范围在20℃~40℃之间,高温性为50℃~60℃,厌氧生物处理常采用温度33℃~38℃和50℃~57℃。
臭氧氧化+生化处理工艺
  对于可生化性很差的污水,单独采用生化处理方法达不到高的COD处理效果,因此出现了化学氧化+生化处理工艺,其中的氧化剂主要采用臭氧,由于臭氧是一种很强的氧化剂,它可以将很多复杂的有机物氧化为简单的有机物,使不可生物降解的成分转化为可生物降解的成分,在这个过程中,臭氧被分解为氧,没有其它有害物质的产生。对于后续的生化处理单元,一些研究人员提出了生物活性炭工艺,一方面活性炭作为微生物载体用来生长生物膜,另一方面活性炭用来吸附难降解的有机物质,进一步降低污水中的COD。应用表明,该工艺对于污水中有机物的深度去除是有效果的,但也存在一定的问题,一是活性炭仍然需要再生,如果不进行再生,饱和后的活性炭只能起普通生物载体的作用;如果进行再生,则前一阶段培养起来的生物膜将被破坏掉。第二个问题是经过沉淀、过滤处理的二级出水中仍然有30——40mg/L的COD,投加臭氧的浓度相应增大,运行成本增加。第三,国内目前还不能生产大容量的臭氧发生器,基建投资大,运行管理复杂。
  如果将这种工艺用于循环冷却系统的补充水处理,则未必能达到理想的运行效果。首先,当有机物种类不同时,微生物的生长状态会有很大的差异,如果有机物成分中可以生化降解的比例高,微生物的基质浓度相应的高,微生物繁殖快,并终导致微生物粘垢的大量产生。相反,如果有机物成分中可生化降解的比例小,则可以作为微生物基质的数量少,稳定条件下微生物生长数量少。因此在补充水的COD组成中,对微生物繁殖起决定作用的是可生化降解的成分。
废水的生化培养过程是一项错综复杂的工作,其理论基础涉及物理学、无机化学、有机化学、微生物学、流体力学等多种学科,尽管早的活性污泥工艺迄今已有近百年的历史,但是诸多理论在学术界仍无定论。因此,在本项目废水生化处理过程中,就要求操作及管理人员,在深入理论研究的基础上,结合公司废水具体情况,在生化培养过程中不断地进行探索实践,在做到系统正常运行,确保废水达标排放的前提下,提高其理论深度,丰富其实践经验,完成其技术储备。
     废水生化处理调试是以微生物的培养为主要过程的工作,按照微生物的需氧情况可分为好氧处理、兼氧处理和厌氧处理;按照微生物的生长形式可分为活性污泥法和生物膜法;按照废水和微生物的形式可分为完全混合式、序批式等;按照其反应器形式则包括更多类型。本人在结合理论及该制药公司现有废水处理工程实践的基础上,对废水生化处理过程中的影响因素、监测手段及控制参数等进行整理。
活性炭吸附工艺
  活性炭吸附法是技术上可靠,经济上可行的物化处理方法,其原理是利用活性炭巨大的表面积吸附水中的有机物,在国外已经有多年的生产应用实践,一般对活性污泥法二级出水先进行混凝沉淀和过滤,然后进行活性炭吸附,炭塔的出水的COD可达到10mg/L左右,吸附的COD同活性炭的重量比可以达到0.3——0.8,运行效果都比较理想,因此采用活性炭处理污水厂二级出水从技术看是成熟、可靠的。
  但是,活性炭吸附处理二级出水也存在一些障碍,其主要问题是活性炭的再生。在运行过程中,活性炭的吸附容量会逐渐饱和,必须进行再生或更换。再生方法通常为热再生法,需要经过干化、有机物热解、活化三个过程,其中活化温度达到820℃以上,设备较为复杂,对于活性炭用量不大的系统,设置活性炭再生设备在经济上是不合算的,在这种情况下,将饱和的活性炭运回活性碳厂再生更经济,国内一些活性炭生产厂已经开展了此项业务。
生物泡沫的控制方法:
①喷洒水。 
这是一种常用的物理方法。通过喷洒水流或水珠以打碎浮在水面的气泡, 来减少泡沫。打散的污泥颗粒部分重新恢复沉降性能,但丝状细菌仍然存在于混合液中,所以,不能根本消除泡沫现象。 
②投加消泡剂。 
  可以采用具有强氧化性的杀菌剂,如氯、臭氧和过氧化物等。还有利用聚乙二醇、硅酮生产的市售药剂,以及氯化铁和铜材酸洗液的混合药剂等。药剂的作用仅仅能降低泡沫的增长,却不能消除泡沫的形成。而广泛应用的杀菌剂普遍存在负作用,因为过量或投加位置不当,会大量降低反应池中絮成菌的数量及生物总量。 
③降低污泥龄。 
 一般采用降低曝气池中污泥的停留时间,以抑制有较长生长期的放线菌的生长。有实践证明,当污泥停留时间在5~6 d时,能有效控制Nocardia菌属的生长,以避免由其产生的泡沫问题。但降低污泥龄也有许多不适用的方面:当需要硝化时,则污泥停留时间在寒冷季节至少需要6 d,这与采用此法矛盾;另外,Microthrix parvicella和一些丝状菌却不受污泥龄变化的影响。 
④回流厌氧消化池上清液。 
 已有试验表明,采用厌氧消化池上清液回流到曝气池的方法,能控制曝气池表面的气泡形成。厌氧消化池上清液的主要作用是能抑制Rhodococcus菌,但利用此法在几个污水处理厂进行实际操作时,并没有取得象实验室那样的成功。由于厌氧消化池上清液中含有高浓度好氧底物和氨氮,它们都会影响后的出水质量,应慎重采用。 
⑤投加特别微生物。 
 研究提出,一部分特殊菌种可以消除Nocardia菌的活力,其中包括原生动物肾形虫等。另外,增加捕食性和拮抗性的微生物,对部分泡沫细菌有控制作用。 
⑥选择器。 
 选择器是通过创造各种反应环境(氧、有机负荷或污泥浓度等),以选择优先生长的微生物,淘汰其他微生物。有研究报道:好氧选择器能一定程度地控制M.parvicella,但对Nocardia菌属无大影响;而缺氧选择器对Nocardia菌属有控制作用,却对M.parvicella无作用。
污水的主要处理工艺有SBR 工艺、厌氧生物处理技术、人工湿地等,同时在某些火车站(客运站)采用了MBR 等其他相关工艺及其组合。由于SBR 工艺更适用于水量较大的情况,而湿地则有占地面积大等问题,所以厌氧生物处理技术成为了处理小型火车站生活污水的优选。
  生物接触氧化法是以附着在载体(俗称填料)上的生物膜为主,以悬浮微生物为辅,净化废水的一种高效水处理工艺。具有活性污泥法特点的生物膜法,兼有活性污泥法和生物膜法的优点。厌氧接触氧化技术是利用附着在填料或载体上生长、繁殖的细菌、原生动物和后生动物等微生物形成的厌氧生物膜和悬浮微生物处理废水的技术。与传统的活性污泥法相比 ,以生物膜为主的厌氧接触氧化反应器有更高的生物质密度和生化反应速率,对有毒有害物质具有较强的耐受性,在较大的剪切力、水利冲击等不利条件下仍运行稳定。李晓艳等采用分散式小区污水处理装置并结合厌氧优势菌,处理天津市某小区的生活污水。整个装置埋于地下,不占地表面积,运行管理简单。经厌氧生物膜处理单元,COD 去除率约60% 左右,氨氮去除率约为45% ,浊度由进水的34 ~ 87 NTU 降到10 NTU 以下,去除效果明显。
  对于生物反应器,进水方式会影响反应过程中的反应速度和终的处理效果,进水方式不同还直接影响污泥的沉降性能。采用脉冲布水方式,能够提高进水流速,在一定程度上冲刷填料上的老化生物膜,促进填料间相互摩擦,从而保持生物膜的活性 ;并且脉冲进水方式能够强化传质作用,加速有机物从污水中向微生物细胞的传递,处理效果稳定。苏玉民等研究表明上流式厌氧污泥床反应器的间歇式脉冲配水系统较传统的连续式配水系统优越。脉冲配水迅速,均匀,没有死区,并能提供柔和的水力搅拌,促进生物体与基质之间的有效接触,提高了反应器的有机负荷,缩短了污泥颗粒化过程。

免责声明:"WSZ-1.5地埋式生活污水处理设备"由潍坊鲁盛水处理设备有限公司自行提供,真实合法性由发布企业负责,环球贸易网对此不承担任何保证责任。

 
您可能喜欢
 
我公司其他产品
 
 
相关分类
 
相关城市的污水处理成套设备产品