30立方米/天地埋式一体化生活污水处理设备

产品编号:28457213 修改时间:2024-04-23 11:18 发布IP:59.63.206.211 访问统计:1次
所属公司: 潍坊鲁盛水处理设备有限公司 更多产品
公司主营: 一体化污水处理设备、生活污水处理设备、...
联系人: 逄政委
联系电话: 13070717631
13070717631
在线咨询:  
品牌: 鲁盛
型号: WSZ
价格: 面议
起订: 1 台
供货总量: 100 台
发货期限: 自买家付款之日起 3 天内发货
产地: 潍坊污水处理成套设备
发货地址: 东风西街1004号
 
 
推荐产品
 
30立方米/天地埋式一体化生活污水处理设备的详细介绍 相关文档: PDF DOC TXT
30立方米/天地埋式一体化生活污水处理设备
鲁盛环保主产:地埋式一体化污水处理设备、气浮机、二氧化氯发生器、加药装置。
我们的产品可用于:生活污水、医疗污水、屠宰污水、养殖污水及类似的生产污水。
产品有市单位检测报告、合格证及其他的认证证书,保证我们的产品都是正品,都是经得住时间考验的产品。
实力方面:公司有3个生产车间,每天可出货5台以上,二氧化氯发生器1个生产车间,每天可出货30台以上。
服务方面:公司在外安装售后技术人员50人,遍布全国各地,一有问题,一个电话,我们马上行动。

BOD5。 BOD5的测试方法严格遵守废水水质分析国家标准测试方法。水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(以mg/L为单位)。它反映了在有氧的条件下,水中可生物降解的有机物的量。生化需氧量越高,表示水中需氧有机物越多。有机物污染物被好氧微生物家分解的过程,一般可分为两个阶段:阶段主要是有机物被转化为二氧化碳、水和氨;第二阶段主要是氨被转化为亚硝酸盐和硝酸盐。污水的生化需氧量通常只指阶段有机物生物氧化所需的氧量。微生物的活动与温度有关,测定生化需氧量时一般以20℃作为测定的标准温度。一般生活污水中的有机物需20天左右才能基本上完成阶段的分解氧化过程,即测定阶段的生化需氧量至少需要20天时间。这在实际工作中有困难。目前以5天作为测定生化需氧量的标准时间,简称5日生化需氧量(用BOD5表示)。据试验研究,一般有机物的5日生化需氧量约为阶段生化需氧量的70%左右,对其他工业废水来说,他们的5日生化需氧量与阶段生化需氧量之差,可以较大或比较接近,不能一概而论。 BOD的测试分析在废水处理工程中非常关键,BOD/COD的值可表示废水的可生物降解性能,BOD/COD的值越高,说明废水的可生化性越强,通过生物处理办法就越适合。其中废水的物化预处理单元、厌氧生物反应大的作用就是提高废水的可生化性,进而提高好氧生化系统的处理效率和效果。
    溶解氧(DO)。DO的测试方法严格遵守废水水质分析国家标准测试方法,或者采用高精密度溶解氧分析仪器。DO的测试在生化处理废水中起重要作用,各种生化反应对溶解氧浓度的要求都很高,在反应过程中,要严格控制废水中的溶解氧浓度,以保证微生物具有高的活性,生化处理达到优处理效果。 溶解氧是影响生化处理效果的重要因素。在好氧生物处理中,如果溶解氧不足,好氧微生物由于得不到足够的氧,其活性受到影响,新陈代谢能力降低,同时对溶解氧要求较低的微生物将应运而生,影响正常的生化反应过程,造成处理效率下降。好氧生物处理的溶解氧一般2~4mg/L为宜,在这种情况下,活性污泥或生物膜的结构正常,沉降、絮凝性能好。供氧过高,能耗浪费,而且代谢活动增强,营养供应不足而使微生物缺乏营养,促使污泥老化,结构松散。 因此,在废水生化处理过程中,溶解氧应该经常测试,以保证曝气池中的溶解氧浓度控制在一个合理的水平上,确保好氧微生物正常生长,取得较好的处理效果。
psb (55)_副本
CASS 工艺流程
  CASS 工艺的特点是对污水预处理要求不高, 只设间隙15mm 的机械格栅和沉砂池。生物处理核心是CASS 反应池, 除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成, 出水可达标排放。
  MSBR 法
  MSBR工艺是20 世纪80 年代初期发展起来的污水处理工艺, 经过不断改进和发展, 目前新的工艺是第三代工艺, 其工作原理如图3 所示。
MSBR 工艺流程
  MSBR 工艺的特点是系统从连续运行的单元(如厌氧池)进水, 从而加速了厌氧反应速率, 改善了系统承受水力冲击负荷和有机物冲击负荷的能力;同时, 由于MSBR 工艺增加了低水头、低能耗的回流设施, 极大地改善了系统中各个单元内MLSS 的均匀性。可见,MSBR 系统是由A2/O 系统与SBR 系统串联组成, 并集合了两者的全部优势, 因而出水水质稳定、高效, 并有极大的净化潜力。
  UNITANK 系统
  SEGHERS 公司提出的UNITANK 系统是SBR 法的又一种变形和发展, 它集合了SBR 和传统活性污泥法的优点, 一体化设计, 不仅具有SBR 系统的主要特点, 还可以像传统活性污泥法那样在恒定水位下连续运行。
  UNITANK 系统的特点是构筑物结构紧凑, 一体化。可根据好氧过程的DO 检测与缺氧和厌氧过程的ORP 在线检测, 通过改变供气量, 切换进出水阀门, 改变好氧、缺氧及厌氧的反应时间等, 高水平地实现系统的时间和空间控制, 高效地去除污水中的有机物及脱氮除磷, 且水力负荷稳定。交替改变进水点, 可以相应改善系统各段的污泥负荷, 进而改善污泥的沉降性能。
F/M(污泥负荷):指单位重量的活性污泥,在单位时间内要保证一定的处理效果所能承受的有机物量。单位是kgBOD5/kg(MLVSS?d),通常用F/M表示有机负荷,F(       feed—饲料?)代表食料,即进入系统中的食物量;M代表活性微生物量,即曝气过程中的挥发性固体量。(另:污泥负荷(sludge loading)---曝气池内每公斤活性污泥单位时间负担的五日生化需氧量公斤数。其计量单位通常以kg/(kg·d)表示。)
      F/M=Q?BOD5(每天进入系统中的食料量)/ MLVSS?Va(曝气过程中的微生物量) 式中:Q为进水流量(m3/d); BOD5为进水的BOD5值(mg/L);Va为曝气池的有效容积(m3);MLVSS为曝气池内活性污泥浓度(mg/L)。
    营养元素。营养元素在工业废水生化处理中作用至关重要。生物培养的微生物按照其细胞组成及代谢性质,在生长繁殖过程中需要一定量的营养元素,主要以氮磷为主。所以工业废水生物培养过程中,需要经常性的投加营养物质,以保证废水中有足够的氮和磷。
      BOD:N:P=100:5:1,这是好氧生化系统中的比例,在好氧生化培养中,缺乏氮元素将导致丝状的或者分散状的微生物群体产生,使其沉降性能差。另外,缺乏氮元素使新的细胞难以形成,而老的细胞继续去除BOD物质,结果微生物向细胞壁外排泄过量的副产物——绒毛状絮状物,这些絮状物沉淀性能差。根据经验,从废水中每去除100kgBOD需要加5kg氮和1kg磷。 在许多条件下,氮以氨形式,磷以磷酸形式加入废水中。细菌需要氮以产生蛋白质,需要磷以产生分解废水中有机物质的酶。一般细菌较易利用氨态氮,在处理工业废水时,如果废水含氮量低,不能满足微生物的需要,需要另外补加氮营养,如尿素、硫酸铵、粪水等。微生物中主要以细菌对磷的要求较多,工业废水中一般需要补加磷元素,如磷酸钾、磷酸钠等。
二级处理工艺及其发展趋势
  二级处理工艺流程的发展主要是在原有的传统处理工艺流程上进行某一个方面的强化处理, 使某一处理水的某一或某几个指标达到一定的标准。
  2 .1  序批式工艺
  2 . .1  传统的SBR 法
  SBR 工艺即间歇活性污泥法, 它由一个或多个曝气反应池组成, 污水分批进入池中, 经活性污泥净化后, 上清液排出池外即完成一个运行周期。每个工作周期顺序完成进水、反应、沉淀、排放4 个工艺过程。
  SBR 工艺的特点是具有一定的调节均化功能,可缓解进水水质、水量波动对系统带来的不稳定性。工艺处理简单, 处理构筑物少, 曝气反应池集曝气、沉淀、污泥回流于一体, 可省去初沉池、二沉池及污泥回流系统, 且污泥量少, 易于脱水, 控制一定的工艺条件可达到较好的除磷效果, 但也存在自动控制和连续在线分析仪器仪表要求高的缺点。
  2 .1 .2  CASS 工艺
  CASS 工艺是一种连续进水式SBR 曝气系统, 不仅具有SBR 工艺简单可靠、运行方式灵活、自动化程度高的特点, 且除磷脱氮效果明显。这一功能主要实现于CASS 池通过隔墙将反应池分为功能不同的区域, 在各分格中溶解氧、污泥浓度和有机负荷不同, 各池中的生物也不相同。整个过程实现了连续进、出水。
MLSS、MLVSS、F/M、SRT等污泥理化指标
    ①SV30(污泥的沉降比):污泥的沉降比是指曝气池中的混合液在1000ml的量筒中,静置30min后,沉降污泥与混合液的体积之比,一般用SV30表示。
SV30是衡量活性污泥沉降性能和浓缩性能的一个指标。对于某种浓度的活性污泥,SV30越小,说明其沉降性能和浓缩性能越好。正常的活性污泥其MLSS浓度为1500~4000mg/L。SV30一般在15%~30%的范围内。
    ②SVI30(污泥的体积指数):污泥的体积指数是指曝气池混合液在1000ml量筒中,静置30min后,1g活性污泥悬浮固体所占的体积,常用SVI30表示,单位为ml/g,SVI30 与SV30存在以下关系:
      SVI30= SV30/MLSS×1000 沉降比SV与污泥的浓度有关,沉降性能相同的污泥,当MLSS较大时,SV也越大;当曝气池中混合液MLSS变化较大时,SV值就无法与历史数据比较,反映的污泥情况失真。测量SV或SVI的目的是反映污泥在二沉池内的沉降浓缩状况。
SVI既是衡量污泥沉降性能的指标,也是衡量污泥吸附性能的一个指标。一般来说,SVI值越大,沉降性能越差,但吸附性能好;反之,SVI越小,沉降性能越好,而吸附性能越差。在传统活性污泥工艺中,一般认为,SVI值在100左右,综合效果好,太大或太小都不利于出水质量的提高。
    ③MLSS(混合液悬浮固体浓度):指曝气池中污水和活性污泥混合后的混合液悬浮固体数量,用MLSS表示,单位是mg/L。它近似的表示曝气池中活性微生物的浓度,是运行管理的一个重要参数。
    ④MLVSS(混合液挥发性悬浮固体浓度):指混合液中悬浮固体中有机物的含量,用MLVSS表示,它较MLSS更能确切的代表活性污泥微生物的数量。
    ⑤SRT(污泥龄或称平均细胞停留时间):是活性污泥在整个系统中的平均停留时间,一般用SRT表示:
      SRT=活性污泥系统中的活性污泥总量/每天从系统内排出的活性污泥量 =(Ma+Mc+MR)/(Mw+Me) 其中Ma,为曝气池中的活性污泥量;Mc,为二沉池的污泥量;MR,为回流系统的污泥量;Mw,为每天排放剩余污泥量;Me,为二沉池出水每天带走的污泥量。
一级处理工艺及其发展趋势
  一级强化处理技术分为两类:一类侧重于物化机理, 一类侧重于微生物的絮凝吸附原理。目前国内外研究的一级处理工艺主要如下。
  1 .1  活化污泥法
  活化污泥法是根据絮凝动力学和生物吸附理论提出“絮凝吸附—沉淀—活化”的城市污水强化一级处理工艺。该工艺对污染物去除的强化作用主要包括污泥的絮凝、吸附和生物代谢3 种, 以前两者的作用为主。
  该工艺的特点是未经沉淀的生活污水原水与生物污泥同时进入混合反应器(絮凝吸附池), 两者在机械搅拌作用下充分混合, 经充分絮凝吸附反应后,大量污染物质被絮凝吸附进入污泥絮体, 出水进入沉淀池, 实现固液分离, 而沉淀池出水就是终出水(见图1)。为了恢复沉淀池饱和污泥的生物絮凝吸附活性, 将沉淀污泥短时间曝气活化, 以部分降解吸附的有机物, 产生适量的微生物絮凝物质, 改善污泥的沉降性能, 同时保持污泥的好氧状态, 避免变黑、发臭。此过程在污泥活化池里进行, 能耗远低于二级生物氧化反应。该工艺是适用于环境状况亟待改
  1 .2  混凝沉淀强化法
  混凝沉淀强化法目前主要应用于给水处理和部分工业废水处理。由于需要投加大量的混凝剂且污水水质常常急剧变化, 限制了其在城市污水处理领域中的应用, 一般仅应用于城市污水的深度处理中。近年来, 随着许多新型、高效、廉价的混凝剂的出现和自动化技术的广泛应用, 混凝法与污水生物处理法相比具有了较强的竞争力。
在活性污泥培养初期,活性污泥很少或基本没有,此时镜检会出现大量的变形虫,当变形虫占优势时,对污水基本没有处理效果。
    在超高负荷的活性污泥系统中,鞭毛虫占优势,出水质量很差。但在活性污泥培养过程中,鞭毛虫的出现并占优势,则说明活性污泥已经形成,并且向良性方向发展。在中等负荷的活性污泥中,草履虫将占优势,此时的处理效果好活性污泥发育正常,沉降性能和生物活性良好,出水水质好。在低负荷延时曝气活性污泥系统中,轮虫和线虫将占优势,此时出水中可能挟带大量的针状絮体。轮虫和线虫大量出现表明活性污泥正常。如发现钟虫不活跃,往往表示曝气不足,如果出现钟虫等原生动物死亡,则说明曝气池内有有毒物进入。在大量钟虫存在的情况下,楯线虫数量多而且活跃,这有可能会令污泥变得松散,如果钟虫数量递减,而楯纤虫数量增加,则潜伏着污泥膨胀的危险。 镜检中发现各类原生动物极少,球衣菌或硫丝细菌很多时,说明污泥已发生膨胀,若发现单个钟虫活跃,其体内的食物泡都能清晰可见,说明污水处理程度高,DO充足。若在二沉池中有许多水蚤(鱼虫),其体内血色素低,说明DO高;水蚤的颜色很红时,则说明出水几乎无溶解氧。当轮虫数量剧增时,则指示污泥老化,结构松散并解体,应加强排泥。
    丝状菌的观察:在活性污泥系统中,并不是丝状菌越少越好,因为丝状菌在污泥絮体中起骨架作用。通过显微镜观察丝状菌的数量及长度、丰度等可直接反映工艺的运行情况。 需要补充的是:生物相观察只是一种定性的方法,运行中只能作为理化方法的补充手段,不可作为主要的工艺检测方法,需要在不断的实践中注意积累资料,总结出本工程的生物相变化规律。
吹脱除氨
  氨吹脱是首先将污水的pH调节到10.8——11.5,再使污水以水滴的形式逆流同大量空气进行传质,进而将水中的氨氮以NH3的形式扩散到大气中的方法。这种除氨工艺简单,容易控制,但存在二个主要问题:
  (1)氨的吹脱效率随pH值的关系很大,为了达到较高的氨氮去除率,必须对污水的pH值调节到碱性,需要投加碱,原水中酸度越高,调节pH消耗的碱量越大;脱氨后的污水还要降pH调整到中性,需要投加酸或CO2,这将增加运行费用,同时还增加了污水中的溶解性固体含量。
  (2)氨吹脱的效率同水温、气温有很大的关系,温度越低,氨的脱除效率越低,20℃时,典型的氨去除率为90%——95%,而10℃时,氨去除率降低到75%以下。一般情况下吹脱的气水比在3000以上,对于敞开式系统,水温将同环境气温趋于一致,环境温度过低将大大影响吹脱效率,如果环境温度低于0℃,脱氨塔将不能运行。因此,对于气温较高的南方地区,如果水中酸度不高,采用吹脱法脱氮是可行的,在北方寒冷地区,则不易采用吹脱脱氮。
  离子交换除氨
  一般的阳离子交换树脂对NH+4没有优先选择性,不能用来脱氨,但斜发沸石对氨离子具有优先选择性,可以用来脱氨,这种脱氨工艺在美国已经应用多年,效果良好。其主要工艺流程是:污水通过斜发沸石离子交换器的过程中,污水中NH+4同沸石上的Na+发生等当量离子交换,Na+进入到污水中,而NH+4则通沸石中的阴离子结合并固着在沸石中,这样在流经斜发沸石离子交换器的过程中,污水中氨得到去除。当沸石对氨的吸附达到饱和后,则停止进水,对沸石进行再生,再生后的沸石可以恢复交换能力,进入下一个周期的离子交换。这种工艺的出水中氨含量可以达到1mg/L左右。
  影响斜发沸石交换过程的主要影响因素有:pH值、污水中阳离子组成、沸石粒径及水力负荷等。铵的佳交换pH值范围为4——8,运行证明,污水中阳离子组成不同会影响到沸石对氨的交换容量,在通常的城市污水阳离子浓度下,沸石对氨的实际交换容量约为总交换容量的1/4——1/5。此外,沸石粒径越小、水力负荷越低,铵的去除效果越好。
COD的测试分析是废水处理调试运行工作的重要组成部分,一方面掌握工艺流程中各处理单元的进出水情况,确保进水稳定,不至于产生较大的波动和对系统的冲击;另一方面,通过各处理单元前后进出水的COD变化情况,了解处理单元的处理效果和效率。其重要作用可总结为以下三点:
    1)提供详细的进出水浓度,使管理人员根据浓度变化情况相应的对运行工况作出调整,保证废水处理系统正常、稳定运行;
    2)作为一项重要的技术指标,反映各处理单元的运行情况及处理效率等;
    3)为整个系统中出现的各种现象及异常情况的分析判断及合理解释提供依据。
    活性污泥的生物相
    活性污泥的生物相观察在废水生化处理过程中作用极其重要,它不仅反映微生物培养程度和污泥驯化程度,并直接反映废水的处理情况。 活性污泥是由细菌类、真菌类、原生动物和后生动物等多种微生物群体所组成的混合培养体。细菌具有较高的增殖速率和较强的分解有机物的功能,真菌也具有分解有机物的能力。原生动物以摄食游离的细菌为主,起到进一步净化水质的作用,后生动物则以摄食原生动物为主。通过光学显微镜可以观察真菌类的丝状菌和原生动物与后生动物的生物相,通过观察与辨别其种属和数量可以判断污泥的质量和处理水质的优劣,因此,将原生动物和后生动物称为活性污泥系统中的指示性生物。 除活性污泥宏观指标外,采用普通光学显微镜可以观察污泥的微观生物指标,即污泥的生物相。生物相观察包括两个部分:一部分是观察原生动物和后生动物等指示性生物的数量及种类变化。不同质量的活性污泥中存在不同的指示生物,通过指示性生物的观察,可以间接评估活性污泥的质量。另一部分是观察活性污泥中丝状菌的数量。不同质量的活性污泥中丝状菌的量是不同的,通过丝状菌数量的测量,也可间接反映活性污泥的质量。
    (1)指示性生物的观察:对于某一特定的污水处理系统,当活性污泥系统运行正常时,其生物相也基本保持稳定,如果出现变化,则表示活性污泥质量发生了变化,应进一步观察并采取处理措施。微生物的种类繁多,其命名方法也非常复杂。从实际出发,运行人员应熟练掌握活性污泥中常见的微型指示生物:变形虫、鞭毛虫、草履虫、钟虫、线虫等。这些微生物中的某一种或几种是否占优势以及比例多少,将取决于工艺的运行状态。
氨氮的去除
  目前含氨氮废水的处理技术有:生物硝化法、离子交换法、吹脱法、液膜法、氯化或吸附法以及湿式催化氧化法等,对于氨氮浓度为几十mg/L的二级生化出水,以生物硝化法、吹脱法和离子交换法应用多,当氨氮浓度不高时则宜采用氯化法。
  生物硝化法脱氨
  生物硝化脱氨是利用硝化菌和亚消化菌在好氧条件下将氨转化为硝酸盐的过程。这两种细菌都是化能自养菌,在有氧条件下,亚硝化菌首先将氨氧化为亚硝酸盐,然后硝化菌再将亚硝酸盐进一步氧化为硝酸盐。国内众多的污水处理厂都具有生物硝化功能来去除污水中的氨氮,对于专门考虑生物硝化的处理设施,可将污水中的氨氮脱除到2mg/L以下。实际工程中,生物硝化同深度去除COD是同一构筑物中完成的,相关研究表明,采用矿物质载体的接触氧化工艺处理炼油厂二级生化处理出水,经过112h的反应,当进水氨氮为20mg/L左右时,出水氨氮可以达到3mg/L以下。
  应该说明的是,生物硝化脱氨只能将氨氮转化为硝酸盐,总氮量并没有减少,如果回用工艺对总氮有要求,应增设反硝化单元。
pH值
    不同的微生物有不同的pH值适应范围。例如细菌、放线菌、藻类和原生动物的pH值适应范围是在4~10之间。大多数细菌适宜中性和偏碱性(pH值6.5~7.5)环境;氧化硫化杆菌喜欢在酸性环境,它的适pH值为3,亦可以在pH值1.5的环境中生活;酵母菌和霉菌要求在酸性或偏酸性的环境中生活,适pH值3.0~6.0,适应pH值范围为1.5~10之间。 废水生物处理过程保持适pH值范围是十分重要的。如用活性污泥法处理废水,曝气池混合液的pH值达到9.0时,原生动物将由活跃转为呆滞,菌胶团粘性物质解体,活性污泥结构遭到破坏,处理效率显著下降。如果进水pH值突然降低,曝气池混合液呈酸性,活性污泥结构也会变化,二沉池中出现大量浮泥现象。
    培养优良、驯化成熟的生物系统具有较强的耐冲击负荷的能力,但如果pH值在大幅度内变化,则会影响反应器的效率,甚至对微生物造成毒性而使反应器失效,因为pH值的改变可能引起细胞电荷的变化,进而影响微生物对营养物质的吸收和微生物代谢中酶的活性。
    综上所述,在生物系统处理废水过程中,应提供微生物佳的pH值范围,以使其在优化条件下运行。
    化学需氧量(COD)。COD的测试方法严格遵守废水水质分析国家标准测试方法。化学需氧量是用化学氧化剂氧化水中的有机污染物时所消耗的氧化剂量,用氧量(mg/L)表示。化学需氧量越高,也表示水中有机污染物越多。常用的氧化剂主要是重铬酸钾和高锰酸钾。以高锰酸钾作氧化剂时,测得的值称CODMn或简称OC。以重铬酸钾作氧化剂时,测得的值称COD?Cr,或简称COD。如果废水中有机物的组成相对稳定,则化学需氧量和生化需氧量之间有一点个比例关系。一般说,重铬酸钾化学需氧量与阶段生化需氧量之差,可以粗略的表示为不能被需氧微生物分解的有机物。
经过充分的生化处理后,水中所含的绝大部分可生化降解的有机物已经被去除,在这种条件下,即使COD浓度较高,采取适当的措施后可以避免将其作为循环系统的补充水而产生微生物大量繁殖的问题。第二,投加臭氧后,难降解或不可生化降解的有机物得到一定程度的分解,转化为可生物降解的有机物,使得污水的可生化性提高。如果不进行进一步的生化处理,必将在循环冷却系统中引起微生物的大量繁殖,因此将投加臭氧作为后置的去除COD措施是不合理的。即使再经过生化处理,这部分可生化降解的有机物可以得到大部分去除,出水中的COD也相应的降低,但臭氧处理后的生化装置出水的BOD则不一定降低,根据前面的分析,将其作为循环系统补充水补到循环冷却系统后,微生物的繁殖程度不一定降低。

免责声明:"30立方米/天地埋式一体化生活污水处理设备"由潍坊鲁盛水处理设备有限公司自行提供,真实合法性由发布企业负责,环球贸易网对此不承担任何保证责任。

 
您可能喜欢
 
我公司其他产品
 
 
相关分类
 
相关城市的污水处理成套设备产品